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Abstract

The Parameterized Inapproximability Hypothesis (PIH) asserts that no FPT algorithm can
decide whether a given 2CSP instance parameterized by the number of variables is satisfiable,
or at most a constant fraction of constraints can be satisfied simultaneously. In a recent break-
through, Guruswami, Lin, Ren, Sun and Wu (STOC 2024) proved the PIH under the Exponential
Time Hypothesis (ETH). But it still remains a major open problem whether the PIH can be
established assuming only W[1] ̸= FPT. Guruswami, Ren and Sandeep (CCC 2024) showed a
weaker version of the PIH called the Baby PIH under W[1] ̸= FPT. They also proposed an in-
termediate hypothesis called the Average Baby PIH that might lead to further progress towards
proving the PIH.

Given a 2CSP instance where the number of its variables is the parameter, the Average Baby
PIH states that no FPT algorithm can decide whether it is satisfiable or any multi-assignment
that satisfies all constraints must assign each variable at least r values on average, for any fixed
constant r > 1. We prove theW[1]-hardness of this problem by giving an FPT-time self-reduction
for 2CSP that turns a gap for multi-assignment in one variable into a gap for multi-assignment
on average, thus proving the implication from the Baby PIH to the Average Baby PIH. Since
the Baby PIH holds under W[1] ̸= FPT, so does the Average Baby PIH.

As an application, we obtain for the first time the W[1]-hardness of constant approximating
k-ExactCover. We also present an alternative proof for the constant inapproximability of
parameterized Nearest Codeword Problem with a large hardness factor under the Average Baby
PIH.

1 Introduction

In classical complexity theory, the PCP theorem [AS98,ALM+98,Din07] serves as an essential tool
for proving most of the existing results in the hardness of approximation. A strengthened version
of the PCP theorem is the Multi-Assignment PCP theorem [AMS06, Lemma 11]. It states that for
any constant r > 1 and 0 < ε < 1, there exists no polynomial-time algorithm which can decide
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whether a CSP instance is satisfiable, or any multi-assignment (see Definition 11) that assigns each
variable with no more than r values can satisfy less than a (1−ε)-fraction of constraints. The Multi-
Assignment PCP theorem was used to show the NP-hardness of approximating SetCover [AMS06].
Although the Multi-Assignment PCP theorem is a simple consequence of the PCP theorem by a
straightforward probabilistic argument, it would be ideal to have a direct and purely combinatorial
proof. Barto and Kozik [BK22] provided such a proof for the case where ε = 0, that is, there is no
gap on the fraction of satisfied constraints, but an arbitrary gap on the “size” of multi-assignment.
They call their result the Baby PCP Theorem.

As an analog of the PCP theorem in parameterized complexity theory, the Parameterized In-
approximability Hypothesis [LRSZ20], PIH for short, is an important conjecture based on which
we can prove many FPT inapproximability results, including the inapproximability of k-Clique,
k-ExactCover [GRS24], Direct Odd Cycle Transversal [LRSZ20], etc. It states that for
some constant 0 < ε < 1, no f(k) ·nO(1)-time algorithm can distinguish a satisfiable 2CSP instance
with k variables from one where less than (1− ε)-fraction of constraints can be satisfied simultane-
ously [LRSZ20]. Unlike the PCP theorem, the PIH is still a major open problem in parameterized
complexity. Currently the state-of-the-art result is that the PIH holds under the Exponential Time
Hypothesis (ETH) [GLR+24b,GLR+24a], but a proof of the PIH under the minimum assumption
W[1] ̸= FPT remains elusive. Toward this goal, studying some consequences of the PIH and proving
them under W[1] ̸= FPT might be helpful.

As a recent progress in this direction, Guruswami, Ren, and Sandeep [GRS24] proved a param-
eterized version of the Baby PCP Theorem, named as the Baby PIH, under W[1] ̸= FPT. The Baby
PIH states that for any constant r > 1, no FPT algorithm can distinguish a satisfiable 2CSP in-
stance from one with no satisfying multi-assignment assigning each variable less than r values. The
same as the relationship between the PCP theorem and the Baby PCP theorem, the Baby PIH is a
direct consequence of the PIH. As a next step, they suggested a further conjecture, i.e., the Average
Baby PIH [GRS24, Conjecture 3], which seems to be sandwiched between the PIH and the Baby
PIH. It postulates the W[1]-hardness of a problem named Avg-r-Gap-2CSP (see Definition 12).
The problem asks for distinguishing a satisfiable 2CSP instance from one with no satisfying multi-
assignment assigning each variable less than r values on average. In [GRS24], the authors gave a
counterexample that for all r > 1 and 0 < ε < 1, some special 2CSP instance cannot be satisfied
by multi-assignments assigning each variable less than r values, but can be satisfied by a multi-
assignment assigning (1 + ε)|X| values to X. Compared to proving the PIH under W[1] ̸= FPT, it
is apparently easier to show the Average Baby PIH under W[1] ̸= FPT, and studying the Average
Baby PIH might bring us further closer to a final proof for the PIH. Furthermore, it turns out that
the Average Baby PIH is already sufficient for proving some non-trivial inapproximability results
such as k-ExactCover [GRS24]. Finally, we also give a reduction from Avg-r-Gap-2CSP to
the parameterized Nearest Codeword Problem (k-NCP), showing that a strengthened version of
Average Baby PIH could imply better lower bounds for constant approximating k-NCP.

1.1 Main Results

In this paper, we first present a proof of the Average Baby PIH under W[1] ̸= FPT. A multi-
assignment to variables is a relaxed version of assignments. Instead of assigning one value to a
variable, a multi-assignment assigns each variable a set of values. A 2CSP instance (X,Σ,Φ) is
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said to be satisfied by a multi-assignment if for every constraint φ, one can pick for each variable of
φ a value from the set assigned to this variable to satisfy φ. Informally, we say a multi-assignment
σ̂ : X → 2Σ assigns

∑
x∈X |σ̂(x)| values (see Definition 11). Our main result is the following

W[1]-hardness of the Average Baby PIH.

Theorem 1 (Informal, See Theorem 21). Assuming W[1] ̸= FPT, for any constant r > 1, given a
2CSP instance Π = (X,Σ,Φ) parameterized by |X|, no FPT-time algorithm can distinguish between:

• Π is satisfiable.

• No multi-assignment to X assigning less than r|X| values satisfies Π.

Applying the reduction in [GRS24], we obtain the W[1]-hardness of constant approximating
k-ExactCover problem (Definition 13), improving previous hardness result under stronger as-
sumption such as the Gap-ETH [Man20].

Theorem 2 (Theorem 35 restated). For any constant r > 1, r-approximating k-ExactCover is
W[1]-hard.

The W[1]-hardness of approximating k-ExactCover problem is a long-standing open prob-
lem in parameterized complexity. Although the W[1], W[2], ETH-hardness of approximating k-
SetCover problem has been established [CL19, KLM19, Lin19, LRSW23], as a special case, the
hardness of approximating k-ExactCover is only known under the PIH [Man20]. Our work gives
the first proof of its W[1]-hardness.

Another contribution of this paper is a reduction from Avg-r-Gap-2CSP to constant approxi-
mating parameterized Maximum Likelihood Decoding problem (Gap-k-MLD), which is a problem
asking for k vectors from k sets spanning to a target vector (see Definition 14). This problem is
equivalent to the parameterized Nearest Codeword Problem (Gap-k-NCP, Definition 15).

Theorem 3 (Informal, see Theorem 32). For any prime p, constants r > γ > 1, there is a
reduction from Avg-r-Gap-2CSP instance Π = (X,Σ,Φ) to γ-Gap-k′-MLDp instance (V, t⃗) with
k′ = O(|Φ|) and satisfies:

• If Π is satisfiable, then there is a solution to (V, t⃗) with k′ vectors;

• If satisfying multi-assignment to X requires more than r|X| values, then solution to (V, t⃗) need
at least γk′ vectors.

This immediately gives a close relation between running time lower bounds for γ-Gap-k′-NCPp

and Avg-r-Gap-2CSP (e.g., [GLR+24a]).

Corollary 4. For any prime p, if no f(k) · no(k)-time algorithm can decide Avg-r-Gap-2CSP
with k constraints for any computable function f , then γ-Gap-k-NCPp cannot be solved in time
g(k) · no(k) for any constant γ < r and any computable function g.

Previous proofs for the parameterized inapproximability of k-NCP (resp. k-MLD) with large
approximation factor [BGKM18, BBE+21, LLL24] all have some blow-up of the parameters that
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prevent us from establishing tight time lower bounds for the inapproximability of k-NCP under
the ETH. Specifically, [BGKM18] first presents a reduction from Gap-2CSP to γ-Gap-k-NCP,
which only works for some constant 1 < γ < 4

3 , and then uses tensor product to amply the
gap γ to arbitrary constant, with the price of increasing the parameter k. Hence, It is suggested
in [Man20,LLL24] to look for an “one-shot” reduction that gives arbitrary constant gap for γ-Gap-
k-NCP. Theorem 3 presents such a one-step reduction from Avg-r-Gap-2CSP to γ-Gap-k-MLD
for any constant r > γ > 1. Therefore, to establish tighter lower bound for it, it suffices to create
large gap for Avg-r-Gap-2CSP, which might be easier than doing directly for γ-Gap-k-NCP.

1.2 Technical Overview

We briefly introduce our techniques to proving the Average Baby PIH and the reduction toGap-k-MLD.

1.2.1 Local-to-Global Reduction For 2CSP

We give a local-to-global reduction which proves the Average Baby PIH assuming the Baby PIH.
Since the Baby PIH holds under W[1] ̸= FPT (Theorem 18, see also [GRS24]), this proves our main
result.

The Baby PIH states that, for all r > 1, it’s W[1]-hard to decide whether a 2CSP instance
is satisfiable, or it cannot be satisfied by any multi-assignment assigning each variable less than r
values. The reduction is said to be “local-to-global” in the sense that, the gap in the Baby PIH is
local, since it only concerns the gap on one variable assigned with the maximum number of values.
On the other hand, the Average Baby PIH concerns gap on the total number of values assigned to
all variables, which is “global”.

Our construction is simple. Fix some Reed-Solomon code C : Fk
p → Fm

p for prime n1/k ≤ p <

2n1/k and m = Θ(k5). Given a 2CSP instance Π0 = (X0,Σ0,Φ0), we construct a new 2CSP instance
Π = (A ∪̇B,Σ,Φ) as:

• A = {a1, · · · , a|Φ0|}, B = {b1, · · · , bm}.

• Each aj takes value from the (encoding of) satisfying assignments of φj = (xi1xi2 , Cj) ∈ Φ0,
i.e., {(C(a), C(b)) : (a, b) ∈ Cj}. Each bℓ takes value from Fk

p.

• For each aj ∈ A and bℓ ∈ B, there is a constraint between them. Let φj = (xi1xi2 , Cj) ∈ Φ0,
then the constraint checks whether aj ’s assignment (u⃗, u⃗′) and bℓ’s assignment v⃗ satisfy u⃗[ℓ] =
v⃗[i1] and u⃗′[ℓ] = v⃗[i2].

Generally speaking, the assignment to A should form a satisfying multi-assignment to the original
instance Π0, and the assignment to bℓ ∈ B tries to guess the ℓ-th entry of the encoding of every xi.
It is easy to see that if the input instance Π0 is satisfiable, then so does the new 2CSP instance Π.

Now, suppose Π0 has no satisfying multi-assignment assigning at most r values to each variable
(r-multi-assignment), we need to argue that Π has no multi-assignment that assign r(1− ε)(|A|+
|B|)/2 values in total (i.e., r(1− ε)/2-average-multi-assignment). For that sake, we use the collision
number of code C. Recall that a set S ⊆ Fm

p collides on an index ℓ ∈ [m] if there exist distinct
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x, y ∈ S such that x[ℓ] = y[ℓ]. Intuitively speaking, if a code C ⊆ Fm
p has large relative distance

and a set S ⊆ C collides on at least (1 − ε)m indices for some ε ∈ (0, 1), then |S| must be larger
than Colε(C), the collision number of C. We can pick a code with Colε(C) ≥ Ω(r|A|). Fix a multi-
assignment σ̂ to Π. Let Sσ̂ ⊆ Fm

p be the set of codewords that are used in the assignment to aj ’s by
σ̂. Next, we argue that if Π0 has no satisfying r-multi-assignment, then for any index ℓ ∈ [m], either
bℓ takes r/2 different guesses under σ̂, or Sσ̂ has a collision on ℓ. Thus, either we have r(1− ε)m/2
values assigned to bℓ’s, or Colε(C) values assigned to aj ’s. By duplicating the variables in A and B,
we show that Π has no r(1− ε)/2-average-multi-assignment. The details are referred to Section 3.

1.2.2 New Reduction from 2CSP To k-MLD

We present a reduction from Avg-r-Gap-2CSP with rectangular relations to γ-Gap-k-MLD for
any γ < r. Given an instance Π = (X,Σ,Φ), the reduction produces for each variable xi ∈ X a
vector set Ui, and for each constraint φj = (xi1xi2 , Cj) ∈ Φ a vector set Wj . Using some appropriate
coloring technique, we can force any solution to contain vectors from each Ui and Wj .

Each vector w⃗ ∈Wj contains the one-hot encoding of a satisfying assignment (a, b) to φj . The
one-hot encoding of (a, b) is placed in the j-th part of w⃗. Each vector u⃗ ∈ Ui contains the (minus)
one-hot encoding of a value a ∈ Σxi assigned to xi. The one-hot encoding of a is placed in all j-th
part of u⃗ that constraint φj depends on variable xi. Finally, the vector set is V = U ∪̇W , and the
target vector t⃗ has all zeros in those parts corresponding to constraints, and all ones in the coloring
part. See Figure 1 in Section 4 for a pictorial illustration.

Now consider the solution to (V, t⃗). It will be clear that if Π is satisfiable, then we can pick
from each Ui and each Wj a vector according to a satisfying assignment and let them sum to t⃗. For
the soundness, we exploit the rectangularity of constraints in Π. Assume that Π is not r-average-
list satisfiable. Let S ⊆ V (along with coefficients) be a solution to (V, t⃗), we notice that S ∩ U
naturally induces a multi-assignment to X, then we argue that this multi-assignment satisfies all
constraints. For each j ∈ [|Φ|], consider the set S ∩Wj . Since φj = (xi1xi2 , Cj) is a rectangular
relation (see Definition 19), let Q denote the underlying set of φj and π, ρ be the mapping from
Σxi1

and Σxi2
to Q, respectively. Then, Σxi1

can be partitioned by π−1(q) for q ∈ Q and so does
Σxi2

. By a careful analysis, we show that there exists q∗ ∈ Q that, the partial sum of solution

in S ∩Wj having non-zero value in entries of π−1(q∗) and ρ−1(q∗) simultaneously. However, the
target vector t⃗ has all-zero in these entries, so the partial sum of solution in S ∩ U must also have
non-zero value in entries of π−1(q∗) and ρ−1(q∗) simultaneously, by the one-hot encoding structure,
this indicates that the multi-assignment induced by S ∩U satisfies φj . The above analysis holds for
all j ∈ [|Φ|], so the multi-assignment satisfies all constraints. Since Π is not r-average-list satisfiable,
|S ∩ U | > r|X|.

Since |S ∩ U | could be significantly smaller than |S ∩W |, we employ a simple construction
in [LLL24] to amplify the gap in S ∩ U . This construction is basically repeating U for sufficiently
many times such that its size dominates the whole instance. This finishes the reduction from Avg-
r-Gap-2CSP with rectangular relations to γ-Gap-k-MLD problem. More details can be found
in Section 4.
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1.3 Discussions

The technique of constructing two parts of variables and arguing at least one part has a gap, is
quite general in previous works of showing the W[1]-hardness of approximating k-SetCover [CL19,
LRSW23], k-NCP [LLL24]. The idea of using collision number of error correcting codes to prove
parameterized inapproximability was first introduced in [KN21] and was further developed in
[LRSW23,LLL24]. We put forward the question of unifying previous techniques.

Question 5. Is there a general framework for proving parameterized inapproximability of mini-
mization problems?

We also raise two questions on strengthening the Average Baby PIH, as it may serve as an
important intermediate step for some further results. The first one asks whether the Average
Baby PIH can be strengthened to require constant fraction of variables being assiged multiple
values. Using the inapproximability of k-Clique [Lin21,KK22,CFLL23], it is not hard to show the
following Question 6 holds for the case r = 2. We ask if a larger gap can be achieved.

Question 6. Under W[1] ̸= FPT, can we prove that for any constant r > 2, no FPT algorithm
can decide whether a 2CSP instance is satisfiable, or any satisfying multi-assignment must have a
constant fraction of variables being assigned r values?

The second one asks whether the Average Baby PIH holds for “sparse” instances, i.e., those
Avg-r-Gap-2CSP instances with smaller constraint set. This is motivated by the following fact.

Fact 7. For any constants c, r > 1 with r < 2c, if there is no FPT-algorithm for Avg-r-Gap-2CSP
instances with k variables and ck constraints, then the PIH holds.

Proof Sketch. Let Π = (X,Σ,Φ) be a NO instance of Avg-r-Gap-2CSP. For any single-assignment
σ : X → Σ, assume that σ violates t constraints, then one can simply add at most 2t values to σ
and obtain a satisfying multi-assignment σ̂ with total value k + 2t. Since Π is a NO instance, we
have k + 2t ≥ rk. Thus, t ≥ r−1

2 k, which is a constant fraction of the constraint number ck.

Fact 7 gives an alternative way to prove the PIH. Note that our proof for the Average Baby
PIH gives instances with Ω(k2) constraints. This motivates the following question.

Question 8. Can we prove that for any constant r > 1, Avg-r-Gap-2CSP is W[1]-hard even on
instances with k variables and sparse (say, o(k2)) constraints?

1.4 Organization

In Section 2 we introduce the main computational problems and complexity assumptions studied
in this paper. As the central contribution, Section 3 explains our reduction from the Baby PIH to
the average PIH. This in fact establishes the Average Baby PIH under W[1] ̸= FPT. Due to space
limitations, we discuss some applications of the Average Baby PIH in the appendices. In particular,
Section 4 gives a reduction from Avg-r-Gap-2CSP to the constant approximation of k-MLD. And
in Appendix A we present a reduction from Avg-r-Gap-2CSP to the constant approximation of
k-ExactCover, which slightly differs from the construction in [GRS24].
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2 Preliminaries

For a positive integer n, we use [n] denote the set {1, 2, · · · , n}. S1 ∪̇ · · · ∪̇Sk is the disjoint union of
sets S1, . . . , Sk, where we tacitly assume that S1, . . . , Sk are pairwise disjoint. We use log (without
subscript) denote the logarithm number with base 2. For any prime number p, we write Fp for
the (unique) finite field of size p. The reader is assumed to be familiar with basic notions in
parameterized complexity theory, in particular FPT and W[1]. Otherwise, the standard references
are, e.g., [FG06,DF13,CFK+15].

2.1 Problems

Definition 9 (Parameterized 2CSP). A 2CSP instance is defined as a triple Π = (X,Σ,Φ) where:

• X is a set of variable.

• Σ =
⋃̇

x∈XΣx, where each Σx has size n, containing values which the variable x ∈ X can be
assigned.

• Φ = {φ1, · · · , φk′}, where each φj = (xi1xi2 , Cj) for some xi1 , xi2 ∈ X, and Ci is a subset of
Σxi1

× Σxi2
.

The problem is to decide whether there exists an assignment σ : X → Σ that satisfies:

• For all x ∈ X, σ(x) ∈ Σx.

• For all φj = (xi1xi2 , Cj) ∈ Φ, (σ(xi1), σ(xi2)) ∈ Cj.

The parameter for this problem is k = |X|, the number of variables. Each pair of variables has
at most one constraint, so |Φ| ≤

(
k
2

)
. Without loss of generality, each variable is related to some

constraint in Φ. The size of instance Π is defined as |Π| = |Σ|+ |Φ|, where each |φj | = |Cj |.

The approximation of parameterized 2CSP is referred to the following problem.

Definition 10 (ε-Gap-2CSP). Given a 2CSP instance Π = (X,Σ,Φ) with parameter k = |X|,
distinguish between:

• Π is satisfiable;

• any assignment can satisfy at most ε-fraction constraints in Φ.

The notion of multi-assignment extends the usual assignment where each variable can be as-
signed multiple values.

Definition 11 (Multi-Assignment). A multi-assignment of 2CSP instance Π = (X,Σ,Φ) is a
function σ̂ : X → 2Σ, where 2Σ is the power set of Σ, such that for all x ∈ X, σ̂(x) ⊆ Σx. A
multi-assignment σ̂ satisfies the instance Π if:

• For all φj = (xi1xi2 , Cj) ∈ Φ, there exists c1 ∈ σ̂(xi1), c2 ∈ σ̂(xi2) that (c1, c2) ∈ Cj.
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For multi-assignment σ̂, the individual value of σ̂ is defined as maxx∈X |σ̂(x)|, and the total value
of σ̂ is defined as

∑
x∈X |σ̂(x)|.

To ease notation, for r ≥ 1, we say that a 2CSP instance Π = (X,Σ,Φ) is r-list satisfiable if
there exists a multi-assignment σ̂ with individual value no more than r which satisfies Π, and say
that Π is r-average list satisfiable if there exists a multi-assignment σ̂ with total value no more than
r|X| which satisfies Π. This motivates the following problem.

Definition 12 (Avg-r-Gap-2CSP). Given a 2CSP instance Π, it is asked to distinguish between
the following two cases:

• Π is satisfiable.

• Π is not r-average list satisfiable.

We also consider the k-ExactCover problem (a.k.a. the k-UniqueSetCover problem) and
k-MLD/k-NCP problem defined below.

Definition 13 (k-ExactCover). Given a set U (which we call universe) and a collection of U ’s
subsets S, the k-ExactCover problem asks for distinguishing between:

• there exist at most k disjoint sets in S that form a partition of U ,

• or U is not the union of any k sets in S.

Definition 14 (k-MLD). For prime p, integer d > 0, given a (multi-)set V of vectors in Fd
p, and

a target vector t⃗ ∈ Fd
p, the k-MLDp problem asks for distinguishing between:

• t⃗ is in the linear space spanned by k vectors in V ,

• or t⃗ is not in the linear space spanned by any k vectors in V .

Without loss of the generality, we can assume V is partitioned into k parts and the YES case requires
picking from each part a vector.

[LLL24] showed the condition of YES instance of k-MLD problem can be strengthened to
requiring the existence of k vectors summing to t⃗.

Definition 15 (k-NCP). For prime p, integer d > 0, given a (multi-)set V of vectors in Fd
p, and

a target vector t⃗ ∈ Fd
p, the k-NCPp problem asks for distinguishing between:

• the Hamming distance between t⃗ and the vector space spanned by V is at most k,

• or the Hamming distance between t⃗ and the vector space spanned by V is at least k + 1.

The k-NCP and k-MLD are equivalent (cf. [LLL24]), so we focus on the k-MLD problem. For
simplicity, we omit the finite field size p when the result holds for all prime p.
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2.2 Hypotheses

Hypothesis 16 (PIH [LRSZ20]). For every constant 0 < ε < 1, no FPT algorithm for ε-Gap-
2CSP.

The Baby PIH, a hypothesis implied by PIH, states the hardness of approximating individual
value of satisfying multi-assignment. Formally,

Hypothesis 17 (Baby PIH [GRS24]). For any constant r > 0, no FPT algorithm can on input a
2CSP instance, distinguish whether it is satisfiable, or cannot be satisfied by any multi-assignment
with individual value less than r.

The Baby PIH (Theorem 18) is a hardness hypothesis against a local property, i.e., the in-
dividual value of satisfying assignments. It is shown that the standard assumption W[1] ̸= FPT
implies Baby PIH:

Theorem 18 ( [GRS24]). The Baby PIH (Hypothesis 17) holds under W[1] ̸= FPT.

To define the Average Baby PIH, we first introduce a useful property concerning relations in a
2CSP instance.

Definition 19 (Rectangular relation). A 2CSP instance Π = (X,Σ,Φ) is said to have rectangular
relations if for each φj = (xi1xi2 , Cj) ∈ Φ, there exists a set Qj and mappings πj , ρj : Σ→ Qj, such
that (a, b) ∈ Cj iff πj(a) = ρj(b). We call Qj the underlying set of φj.

The name “rectangular” comes from the following intuition. Recall that a subset S ⊆ Σ2 is a
rectangle if and only if there exist A,B ⊆ Σ such that S = A×B. It is easy to verify that R ⊆ Σ2 is
rectangular if and only if R is the union of a set of pairwise disjoint rectangles. [GRS24] raised the
Average Baby PIH on hardness result against a global property, i.e., the total value of satisfying
assignments.

Hypothesis 20 (Average Baby PIH). For any constant r > 0, there exists no FPT algorithm for
the Avg-r-Gap-2CSP problem, even for instances with only rectangular relations.

3 Average Baby PIH from Baby PIH

We show that the Average Baby PIH (Hypothesis 20) even with rectangular relations is implied
by the Baby PIH. More precisely, we employ a local-to-global reduction developed in [LLL24] to
amplify the local gap for one variable (Theorem 18) into a global gap for all variables.

Theorem 21 (Average Baby PIH). Under W[1] ̸= FPT, for any constant r > 0, no FPT algorithm
can distinguish a given 2CSP instance with rectangular relation is satisfiable, or cannot be satisfied
by multi-assignment with total value no more than r.

To show Theorem 21, we first introduce some gap-creating tools. The collision number of an
error-correcting code characterizes the number of codewords needed to find “collision” on a constant
fraction of coordinates. We use the definition in [LLL24]:
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Definition 22 (ε-Collision Number). Let m ≥ 1 and x, y ∈ Σm with x ̸= y. For every i ∈ [m]
we say that x and y collide on position i if x[i] = y[i]. Furthermore, a subset S ⊆ Σm collides on
position i if there exist distinct x, y ∈ S with x[i] = y[i]. We define the collision set of S as

ColSet(S) =
{
i ∈ [m]

∣∣ S collides on position i
}
.

Observe that if |S| ≤ 1, then ColSet(S) = ∅.

Now for every C ⊆ Σm and 0 < ε < 1 the ε-collision number of C, denoted by Colε(C), is the
maximum s ≤ |C|+ 1 such that for all S ∈

(
C

s−1

)
we have∣∣ColSet(S)∣∣ ≤ εm.

The relationship between collision number and distance has been established. For Reed-
Solomon codes we have:

Theorem 23 (Theorem 10 in [LRSW23], see also [KN21]). For any 0 < ε < 1, any Reed-Solomon

code CRS : Fk
p → Fm

p with sufficiently large k < m ≤ p, Colε(CRS) ≥
√

2εm
k .

To prove the Average Baby PIH (Theorem 21), we first give an intermediate step. This step
reduces any 2CSP instance to a new bipartite 2CSP instance whose variables are partitioned into
two groups and obtains different gaps for average multi-assignments to both variable groups. Below,
we introduce the notion Average Multi-Assignment for bipartite 2CSPs. In Lemma 27, we will show
that the gaps for average multi-assignments to bipartite 2CSP can be transferred into that for one
variable set, completing the proof for Theorem 21.

Definition 24 ((r, s)-Average Multi-Assignment). Let Π = (X,Σ,Φ) be a bipartite 2CSP instance,
in particular X = X1 ∪̇ X2 and every φ = (x1x2, C) ∈ Φ has x1 ∈ X1 and x2 ∈ X2. Then for
r1, r2 ≥ 1 an (r1, r2)-average multi-assignment of Π is a multi-assignment σ̂ : X → 2Σ such that∑

x∈X1
|σ̂(x)|

|X1|
≤ r1 and

∑
x∈X2

|σ̂(x)|
|X2|

≤ r2.

That is, the total value of σ̂ restricted to X1 is at most r1, and the total value of σ̂ restricted to
X2 is at most r2 (cf. Definition 11). We say Π is (r1, r2)-average list satisfiable if there is an
(r1, r2)-average multi-assignment which satisfies Π.

The intermediate step of our reduction is the following Lemma.

Lemma 25. There is an algorithm A which on input a 2CSP instance Π0 = (X0,Σ0,Φ0), ε > 0,
and r ≥ 1 computes a bipartite 2CSP instance Π = (X1 ∪̇X2,Σ,Φ) with the following properties.

Completeness. If Π0 is satisfiable, then so is Π,

Soundness. For every r ≥ 1 if Π0 is not 2r-list satisfiable, then Π is not (r1, r2)-average list
satisfiable for every r1, r2 ∈ N with

r1 + r2 ≤ 2(1− ε)r.

10



Rectangularity. All constraints in Φ are rectangular.

In addition, there exists a computable function f upper bounding the running time of A as

f(|X0|+ |Φ0|+ 1/ε+ r)|Σ0|O(1). (1)

And the number of variables |X1|+ |X2| and the number of constraints |Π| in Π can also be upper
bounded by f(|X0|+ |Φ0|+ 1/ε+ r).

Proof. For the given 2CSP instance Π0 = (X0,Σ0,Φ0) we let

k = |X0| and k′ = |Φ0|.

Thereby we fix some enumerations of the variables in X0 and the constraints in Φ0 as

X0 = {x1, . . . , xk} and Φ0 =
{
φ1, . . . , ϕk′

}
.

Let C : Fk
p → Fk′′

p be a Reed-Solomon code with

2|Σ0|1/k > p ≥ |Σ0|1/k and k′′ =

⌊
8(1− ε)2r2

ε
k(k′)2

⌋
+ 1.

Clearly |Σ0| ≤ pk, and therefore we can assume without loss of generality

Σ0 ⊆ Fk
p.

Moreover, we only consider the case that

k′′ ≤ p
(
=

∣∣Fp

∣∣) < 2|Σ0|1/k,

i.e., Σ0 is sufficiently larger than k and k′.1 Hence we can invoke Theorem 23 on Σ ← Fp, k ← k,
m← k′′, and ε← ε to obtain

Colε(C(Fk
p)) ≥

√
2εk′′

k
> 4(1− ε)rk′, (2)

where the second inequality is by our choice of k′′.

Now the algorithm A constructs the following bipartite 2CSP instance Π = (X,Σ,Φ).

Variables. X = X1 ∪̇X2 with

X1 = {u1, . . . , uk′} and X2 = {v1, . . . , vk′′}.

Alphabets. Σ =
⋃

u∈X1
Σu ∪

⋃
v∈X2

Σv where:

1Otherwise, the original instance Π0 can be solved in time of the form (1), and we can then output some prede-
termined Π depending on whether Π0 is satisfiable.
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• For every j ∈ [k′] the alphabet of the variable uj ∈ X1 is

Σuj =
{(
C(a1), C(a2)

) ∣∣∣ φj = (xi1xi2 , C) and (a1, a2) ∈ C
}
⊆

(
C(Fk

p)
)2 ⊆ (

Fk′′
p

)2
. (3)

That is, Σuj contains all the (partial) satisfying assignments of φj encoded by C : Fk
p →

Fk′′
p as pairs of vectors in Fk′′

p . (Recall Σ0 ⊆ Fk
p.)

• For every ℓ ∈ [k′′] we have Σvℓ = Fk
p. Since p < 2|Σ0|1/k, we have |Σvℓ | ≤ 2k|Σ0|.

Constraints. Let j ∈ [k′] and φj = (xi1xi2 , C). Then for every ℓ ∈ [k′′] we have a constraint
between the variable uj ∈ X1 and vℓ ∈ X2 which checks whether uj is assigned to (w1, w2) ∈(
Fk′′
p

)2
and vℓ to s ∈ Fℓ

q such that

w1[ℓ] = s[i1] and w2[ℓ] = s[i2]. (4)

Consequently (4) implies that the constraint is rectangular.2 Moreover, the number of con-
straints in Π is

k′k′′ = k′
⌊
2(1− ε)2r2

ε
k(k′)2

⌋
+ k′.

The completeness of our reduction is straightforward. So we turn to the soundness. In par-
ticular, we assume that the given 2CSP instance Π0 is not 2r-list satisfiable. Furthermore, let
σ̂ : X → 2Σ be a satisfying multi-assignment for Π. We need to show that, for any r1, r2 ∈ N if
there is a satisfying (r1, r2)-average multi-assignment σ̂, then

r1 + r2 > 2(1− ε)r. (5)

To that end, let

Wordσ̂ =
⋃

uj∈X1

⋃
(w1,w2)∈σ̂(uj)

{w1, w2} ⊆ Fk′′
p . (6)

That is, Wordσ̂ is the set of all codewords in Fk′′
p that σ̂ uses for the variables in X1.

Claim 26. Let ℓ ∈ [k′′] with |σ̂(vℓ)| ≤ 2r. Then Wordσ̂ collides on position ℓ.

Proof of Claim 26. Let ℓ ∈ [k′′] be fixed with |σ̂(vℓ)| ≤ 2r.

Consider an arbitrary constraint φj = (xi1xi2 , C) ∈ Φ0

(
i.e., j ∈ [k′]

)
. Since σ̂ is a satisfying

multi-assignment for Π, there exist

(w1, w2) ∈ σ̂(uj) ⊆ Σuj ⊆
(
Fk′′
p

)2
and s ∈ σ̂(vℓ) ⊆ Fk

p

such that uj = (w1, w2) and vℓ = s satisfy the constraint between uj and vℓ in Π. By (w1, w2) ∈ Σuj

and (3) there are a1, a2 ∈ Σ0 with w1 = C(a1) and w2 = C(a2) such that

xi1 = a1 and xi2 = a2 satisfy φj . (7)

2To see this, we take π(uj) = π(w1, w2) = (w1[ℓ], w2[ℓ]) and ρ(vℓ) = (vℓ[i1], vℓ[i2]). Then equation (4) is precisely
π(uj) = ρ(vℓ) as in Definition 19.
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Then we say that a1 is (σ̂, φj)-suitable for xi1 with respect to s, and similarly a2 is (σ̂, φj)-suitable
for xi2 with respect to s.

In addition, by (4)

C(a1)[ℓ] = s[i1] and C(a2)[ℓ] = s[i2]. (8)

Now we define a multi-assignment σ̂0 : X0 → 2Σ0 for the original instance Π0 = (X0,Σ0,Φ0) as
follows. For every x ∈ X0 let

σ̂0(x) =
⋃

s∈σ̂(vℓ)

{
a ∈ Σ0

∣∣ j ∈ [k′] and a is (σ̂, φj)-suitable for x with respect to s
}
. (9)

(Recall that we have fixed an ℓ ∈ [k′′] and hence σ̂(vℓ).) Since every variable xmust appear in at least
one constraint φj ∈ Φ0 (cf. Definition 9), it is easy to see that σ̂0 is a satisfying multi-assignment
for Π0 by (7).

As Π0 is not 2r-list satisfiable, there is an xi∗ ∈ X0 (i.e., i∗ ∈ [k]) with∣∣σ̂0(xi∗)∣∣ ≥ 2r + 1.

We have assumed that
|σ̂(vℓ)| ≤ 2r,

so by (9) there is an s ∈ σ̂(vℓ) such that∣∣∣{a ∈ Σ0

∣∣ j ∈ [k′] and a is (σ̂, φj)-suitable for xi∗ with respect to s
}∣∣∣ ≥ 2.

Hence there are a1, a2 ∈ Σ0 with a1 ̸= a2 and j1, j2 ∈ [k′] such that

- a1 is (σ̂, φj1)-suitable for xi∗ with respect to s,

- and a2 is (σ̂, φj2)-suitable for xi∗ with respect to s.

Then (8) implies that
C(a1)[ℓ] = s[i∗] = C(a2)[ℓ].

In other words, C(a1) and C(a2) collide on position ℓ. Clearly C(a1), C(a2) ∈Wordσ̂, so this finishes
the proof of the claim. ⊣

Let

r1 =

∑
x∈X1

|σ̂(x)|
|X1|

=

∑
j∈[k′]

∣∣σ̂(uj)∣∣
k′

and r2 =

∑
x∈X2

|σ̂(x)|
|X2|

=

∑
ℓ∈[k′′]

∣∣σ̂(vℓ)∣∣
k′′

.

Now we distinguish two cases.

• There are more than ε fraction of ℓ ∈ [k′′] such that |σ̂(vℓ)| ≤ 2r, then Claim 26 implies that
Wordσ̂ collides on more than ε fraction of positions ℓ ∈ [k′′]. Recall (2), i.e.,

Colε(C(Fk
p)) ≥

√
2εk′′

k
> 4(1− ε)rk′.
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Hence, ∣∣Wordσ̂
∣∣ ≥ Colε(C(Fk

p)) > 4(1− ε)rk′.

By the definition (6) of Wordσ̂ we deduce

∣∣Wordσ̂
∣∣ =

∣∣∣∣∣∣
⋃

uj∈X1

⋃
(w1,w2)∈σ̂(ui)

{w1, w2}

∣∣∣∣∣∣
≤

∑
uj∈X1

∣∣∣∣∣∣
⋃

(w1,w2)∈σ̂(ui)

{w1, w2}

∣∣∣∣∣∣ ≤
∑

uj∈X1

2
∣∣σ̂(ui)∣∣

It follows that

r1 =

∑
j∈[k′]

∣∣σ̂(uj)∣∣
k′

>
4(1− ε)rk′

2k′
= 2(1− ε)r.

• There are at most ε fraction of ℓ ∈ [k′′] with |σ̂(vℓ)| ≤ 2r. Or equivalently, there are at least
(1− ε) fraction of ℓ ∈ [k′′] with |σ̂(vℓ)| ≥ 2r + 1. Then

r2 =

∑
ℓ∈[k′′]

∣∣σ̂(vℓ)∣∣
k′′

≥ (1− ε)k′′(2r + 1) + εk′′

k′′
> 2(1− ε)r.

So both cases lead to (5) as desired.

With some proper replication, the unbalanced (r1, r2)-gap can be turned into a balanced one,
and yield the final r-average list unsatisfiability.

Lemma 27. For any bipartite 2CSP instance Π = (X1 ∪̇X2,Σ,Φ) and r > 1 we can compute in
polynomial time a 2CSP instance Π′ = (X ′,Σ′,Φ′) with

|X| = 2|X1||X2|

such that

Completeness. If Π is satisfiable, then so is Π′,

Soundness. Let r ≥ 1. If Π is not (r1, r2)-average list satisfiable for every r1, r2 ≥ 1 with r1+r2 ≤
2r, then Π′ is not r-average list satisfiable. Or equivalently, if Π′ is r-average list satisfiable,
then for some r1, r2 ∈ N with r1 + r2 ≤ 2r the bipartite Π is (r1, r2)-average list satisfiable.

Furthermore, if Π is rectangular, then so is Π′.

Proof. Let

k1 = |X1| and k2 = |X2|.

The desired Π′ = (X ′,Σ′,Φ′) is constructed as below.
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Variables. X ′ consists of k2 copies of X1 and k1 copies of X2, i.e., X
′ = X ′

1 ∪̇X ′
2 where

X ′
1 =

{
x(i)

∣∣ x ∈ X1 and i ∈ [k2]
}

and X ′
2 =

{
x(i)

∣∣ x ∈ X2 and i ∈ [k1]
}
.

Note, |X ′
1| = |X ′

2| = k1k2, therefore Π′ contains 2k1k2 many variables.

Alphabets. Σ′ =
⋃

x∈X′ Σ′
x where:

• For every x ∈ X1 and i ∈ [k2] let Σ
′
x(i) = Σx. Recall that Σx ⊆ Σ is the alphabet for the

variable x in the original 2CSP instance Π.

• Similarly, for every x ∈ X2 and i ∈ [k1] let Σ
′
x(i) = Σx.

Constraints. For every constraint φ = (x1x2, C) ∈ Φ with x1 ∈ X1 and x2 ∈ X2, i1 ∈ [k2], and
i2 ∈ [k1] we have a constraint

φi1,i2 =
(
x
(i1)
1 x

(i2)
2 , C

)
∈ Φ′.

That is, φi1,i2 is a copy of φ where the variable x1 is replaced by its i1-th copy x
(i1)
1 and x2

by its i2-th copy x
(i2)
2 . It immediately implies that if Π is rectangular, then Π′ is rectangular

too.

Again the completeness is immediate. Towards the soundness, let σ̂′ : X ′ → 2Σ
′
be a satisfying

r-average multi-assignment for Π′. In particular,

r =

∑
x∈X′

∣∣σ̂′(x)
∣∣

|X ′|
=

∑
x∈X′

1

∣∣σ̂′(x)
∣∣+∑

x∈X′
2

∣∣σ̂′(x)
∣∣

|X ′
1|+ |X ′

2|
=

∑
x∈X′

1

∣∣σ̂′(x)
∣∣+∑

x∈X′
2

∣∣σ̂′(x)
∣∣

2k1k2
.

We set

r1 =

∑
x∈X′

1

∣∣σ̂′(x)
∣∣

|X ′
1|

=

∑
x∈X′

1

∣∣σ̂′(x)
∣∣

k1k2
and r2 =

∑
x∈X′

2

∣∣σ̂′(x)
∣∣

|X ′
2|

=

∑
x∈X′

2

∣∣σ̂′(x)
∣∣

k1k2
(10)

It follows that

r1 + r2 =

∑
x∈X′

1

∣∣σ̂′(x)
∣∣+∑

x∈X′
2

∣∣σ̂′(x)
∣∣

k1k2
= 2r.

Note that

X ′
1 =

⋃̇
i∈[k2]

{
x(i) | x ∈ X1

}
. (11)

Therefore,

r1k1k2 = r1|X ′
1|

(
by |X ′

1| = k1k2
)

=
∑
x∈X′

1

∣∣σ̂′(x)
∣∣ (

by (10)
)

=
∑
i∈[k2]

∑
x∈X1

∣∣σ̂′(x(i))
∣∣. (

by (11)
)
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Hence, there exists an i1 ∈ [k2] such that

∑
x∈X1

∣∣σ̂′(x(i1))
∣∣ ≤ r1k1, or equivalently

∑
x∈X1

∣∣σ̂′(x(i1))
∣∣

|X1|
≤ r1

by |X1| = k1. Arguing similarly for X2 we get an i2 ∈ [k1] such that∑
x∈X2

∣∣σ̂′(x(i2))
∣∣

|X2|
≤ r2

Finally we define a multi-assignment σ̂ for the original instance Π by

σ̂(x) =

{
σ̂′(x(i1)) if x ∈ X1

σ̂′(x(i2)) if x ∈ X2.

By the above argument, σ̂ is (r1, r2)-average. Moreover, it satisfies Π, since σ̂′ satisfies Π′.

Putting all previous results together, we have Theorem 21.

Proof of Theorem 21. We give an FPT reduction from instances in the Baby PIH (Theorem 18)
to Avg-r-Gap-2CSP. Then, since the Baby PIH holds under W[1] ̸= FPT, we deduce that the
Average Baby PIH also holds under W[1] ̸= FPT.

For any 2CSP instance Π0 = (X0,Σ0,Φ0), we can construct a bipartite 2CSP instance Π1 =
(X1,Σ1,Φ1) by Lemma 25, and then construct an Avg-r-Gap-2CSP instance Π = (X,Σ,Φ) from
Π1 by Lemma 27. Trivially, Π is satisfiable when Π0 is satisfiable. When Π0 is not r-list satisfiable,
Π1 is not (r1, r2)-average list satisfiable for every constants r1, r2 with r1 + r2 ≥ 2(1− ε)r, and thus
Π is not (1 − ε)r-average list satisfiable. Furthermore, Π has rectangular relation because Π1 has
rectangular relation.

Moreover, the running time of this reduction can be bounded by

f(|X0|+ |Φ0|+ 1/ε+ r)|Σ0|O(1)

for a computable function f , and

|X|+ |Φ| ≤ f(|X0|+ |Φ0|+ 1/ε+ r)|Σ0|O(1)

as well, so the reduction is an FPT-reduction.

4 From Average Baby PIH to Inapproximability of k-NCP

Since k-NCP and k-MLD are equivalent [LLL24, Appendix A], it suffices to give a gap-preserving
reduction from Avg-r-Gap-2CSP to γ-Gap-k′′-MLDp with k′′ = O(|Φ|) and γ < r for any constant
γ to obtain the inapproximability of k-NCP. First we present a reduction to a “weighted” version
of γ-Gap-k-MLDp.
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Theorem 28. For any prime p, there is an FPT algorithm A1 that, given an instance (X,Σ,Φ) of
Avg-r-Gap-2CSP with rectangular relations and |X| = k, |Φ| = k′, A outputs a (k + k′)-MLDp

instance (V, t⃗) with V = U ∪̇W ⊆ Fd
p, where U = U1 ∪̇ · · · ∪̇Uk and W = W1 ∪̇ · · · ∪̇Wk′, such that:

• |V | = O(k′|Σ|2) and d = 2k′|Σ|+ k′ + k.

• (Completeness) If the input is a YES instance, then there exists u⃗1 ∈ U1, · · · , u⃗k ∈ Uk, w⃗1 ∈
W1, · · · , w⃗k′ ∈Wk′ such that u⃗1 + · · ·+ u⃗k + w⃗1 + · · ·+ w⃗k′ = t⃗.

• (Soundness) If the input is a NO instance, then any solution to (V, t⃗) must contain at least
rk vectors with nonzero coefficients in U .

Proof. For j ∈ [k′], Let φj = (xi1xi2 , Cj) ∈ Φ. For i ∈ [k], let e⃗k(i) ∈ Fk
p be the one-hot encoding of

i, i.e., e⃗k(i) has 1 in the i-th entry and 0 in the rest entries. We omit the subscript k if it is clear
from the context.

We divide the dimension of vectors in the (k + k′)-MLDp instance into the following (k′ + 1)
parts:

• The j-th of the first k′ parts, which we call the “φj part”, is to guarantee the satisfaction
of the constraint φj = (xj1xj2 , Cj) by one-hot encoding xj1 and xj2 in Wj and checking the
consistency of each variable in U . This part is further divided into the “(j, 1) part” and “(j, 2)

part”, each of length |Σ|. We use v⃗(j) ∈ F2|Σ|
p to denote the φj part, and v⃗(j,1), v⃗(j,2) ∈ F|Σ|

p to
denote the (j, 1) and (j, 2) part of v⃗ ∈ Fd

p respectively.

• The last part of length k′ + k, which we call “color part”, is to ensure that at least one vector
is chosen from each Ui and Wj . Let v⃗

(color) ∈ Fk′+k
p denote the color part of v⃗ ∈ Fd

p.

The structure of the vectors is illustrated in Figure 1.

(a, b) ∈ φ1

W2 ∋ w⃗2,(a,b)

Wk′ ∋ w⃗k′,(a,b)

U1 ∋ u⃗1,a a ∈ Σ1

W1 ∋ w⃗1,(a,b)

U2 ∋ u⃗2,a

Uk ∋ u⃗k,a

Target vector t⃗

· · ·
· · ·

· · ·

· · ·

· · ·

· · ·

0⃗

0⃗

0⃗

0⃗

0⃗

kk′|Σ| |Σ| |Σ| |Σ| |Σ| |Σ|

φ1 part
(1, 1) part (1, 2) part

φ2 part
(2, 1) part (2, 2) part

φk′ part

(k′, 1) part(k′, 2) part
Color part

...

...

0⃗

0⃗

0⃗

0⃗

0⃗

0⃗

0⃗

0⃗

0⃗

0⃗

0⃗

0⃗

e⃗(a)

e⃗(a)

e⃗(a)

−e⃗(a)

−e⃗(a)−e⃗(a)

−e⃗(a)

e⃗(b)

e⃗(b)

e⃗(b)

e⃗(1)

e⃗(2)

e⃗(1)

e⃗(k′)

0⃗

e⃗(k)0⃗

e⃗(2)0⃗ 0⃗

1⃗0⃗

Figure 1: The structure of constructed vectors (assume that φ1 = (x1x2, C1), φ2 = (x2xk, C2) for
example).

Formally, the algorithm A1 constructs the (k + k′)-MLDp instance (U ∪̇W, t⃗) as follows:
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• For every i ∈ [k], let Ui = {u⃗i,a | a ∈ Σxi}, where

– For every j ∈ [k′],

u⃗
(j,1)
i,a =

{
−e⃗|Σ|(a), if φj = (xix

′, Cj),

0⃗|Σ|, otherwise.

u⃗
(j,2)
i,a =

{
−e⃗|Σ|(a), if φj = (x′xi, Cj),

0⃗|Σ|, otherwise.

– u⃗
(color)
i,a = 0⃗ ◦ e⃗k(i).

• For every j ∈ [k′], φj = (xj1xj2 , Cj), let Wj = {w⃗j,(a,b) | (a, b) ∈ Cj (⊆ Σxj1
× Σxj2

)}, where

– w⃗
(j)
j,(a,b) = e⃗|Σ|(a) ◦ e⃗|Σ|(b).

– w⃗
(i)
j,(a,b) = 0⃗ for every i ̸= j.

– w⃗
(color)
j,(a,b) = e⃗k′(j) ◦ 0⃗.

• Let the target vector be t⃗ = 02k
′|Σ| ◦ 1k′+k.

The algorithm clearly runs in FPT time. The completeness is also obvious: for any satisfying
assignment σ : X → Σ, pick u⃗i,σ(xi) ∈ Ui for every i ∈ [k] and w⃗j,(σ(xj1

),σ(xj2
)) ∈Wj for every j ∈ [k′]

to obtain a solution to (U ∪̇W, t⃗). To see the soundness, we first prove the following claim.

Claim 29. Let S ⊆ U ∪̇W (with their coefficients λ : S → Fp \ {0}) be a solution to (U ∪̇W, t⃗).
Let α⃗ =

∑
w⃗∈S∩W λ(w⃗)w⃗. For every φj = (xj1xj2 , Cj) ∈ Φ with rectangular relation, there exists

(a∗, b∗) ∈ Cj such that α⃗(j,1)[a∗] ̸= 0 and α⃗(j,2)[b∗] ̸= 0.

Proof of Claim 29. Since φj is a rectangular relation, let Q be its underlying set and let π and ρ
be the corresponding mappings from Σxj1

and Σxj2
to Q (recall Definition 19). Then, since every

satisfying assignment (a, b) ∈ Cj satisfies π(a) = ρ(b) ∈ Q, we can divide all satisfying assignments
of φj into |Q| disjoint parts according to the element in Q to which assignments a, b are mapped.

More precisely, the assignments contained in group q ∈ Q are φ
(q)
j = π−1(q)× ρ−1(q) ⊆ Cj . Let

W
(q)
j = {w⃗j,(a,b) | (a, b) ∈ φ

(q)
j } ⊆Wj ,

since {φ(q)
j }q∈Q forms a partition of Cj , {W (q)

j }q∈Q also forms a partition of Wj .

Since every vector outside Wj has 0 in the j-th entry of the color part, the sum of coefficients
to S ∩Wj is exactly the value in the j-th colored parts, i.e.,∑

w⃗∈S∩Wj

λ(w⃗) =
∑

w⃗∈S∩Wj

λ(w⃗) · w⃗(color)
j [j] = t⃗(color)[j] = 1.

Meanwhile, the left hand side can be written as∑
q∈Q

∑
w⃗∈S∩W (q)

j

λ(w⃗) = 1.
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Hence there must exist some q∗ ∈ Q such that∑
w⃗∈S∩W (q∗)

j

λ(w⃗) ̸= 0.

Consider α⃗(j,1), the first variable (xj1) of φj part in α⃗. Recall that entries of α⃗(j,1) are naturally
indexed by elements in Σxj1

, since α⃗(j,1) is the linear combination of one-hot encodings, content in

the entries corresponds to π−1(q∗) is exactly

α⃗(j,1)|π−1(q∗) =
∑

w⃗∈S∩W (q∗)
j

λ(w⃗)w⃗(j,1)|π−1(q∗)

(Here we use w⃗(j,1)|π−1(q∗) to denote the restriction of vector w(j,1) on entries π−1(q∗).) Since the

sum of coefficients is not zero, and w⃗(j,1)|π−1(q∗)’s are all one-hot vectors, the above sum is not 0⃗.
This indicates the existance of some a∗ ∈ π−1(q∗) that

α⃗(j,1)[a∗] ̸= 0.

Similarly, there exists b∗ ∈ ρ−1(q∗) such that α⃗(j,2)[b∗] ̸= 0⃗, and (a∗, b∗) ∈ Cj follows from
π(a∗) = ρ(b∗) = q∗. This finishes the proof of Claim 29. ⊣

Claim 30 (Soundness of Reduction). Let S ⊆ U ∪̇W (with their coefficients λ : S → Fp \ {0}) be
a solution to (U ∪̇W, t⃗). Then

σ̂(xi) = {a ∈ Σxi | u⃗i,a ∈ S ∩ Ui}

is a satisfying multi-assignment to the original Avg-r-Gap-2CSP instance with total value |S ∩U |.

Proof of Claim 30. Following notation in Claim 29, let α⃗ =
∑

w⃗∈S∩W λ(w⃗)w⃗, and β⃗ =
∑

u⃗∈S∩U λ(u⃗)·
u⃗. Since S is a solution, For every φj = (xj1xj2 , Cj) ∈ Φ,

t⃗(j,1)[a∗] = (α⃗+ β⃗)(j,1)[a∗] = 0.

By Claim 29, there must exist (a∗, b∗) ∈ Cj such that α⃗(j,1)[a∗] ̸= 0 and α⃗(j,2)[b∗] ̸= 0, hence

β⃗(j,1)[a∗] ̸= 0, β⃗(j,2)[b∗] ̸= 0.

Observe that β⃗(j,1)[a∗] ̸= 0 if and only if u⃗j1,a∗ ∈ S ∩ U , so u⃗j1,a∗ ∈ S. Similarly, u⃗j2,b∗ ∈ S.
Therefore, a∗ ∈ σ̂(xj1) and b∗ ∈ σ̂(xj2), thus φj is satisfied by σ̂. The total value of σ̂ is∑

x∈X
|σ̂(x)| =

∑
1≤i≤k

|{a ∈ Σxi | u⃗i,a ∈ S ∩ Ui}| =
∑

1≤i≤k

|S ∩ Ui| = |S ∩ U |.

⊣

From Claim 30, if the input 2CSP instance is not r-average-list satisfiable, then |S ∩ U | > rk.
Therefore, the soundness of Theorem 28 is shown.
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Theorem 28 gives a gap that only occurs in one side. We apply the construction in [LLL24,
Theorem 20] as follows.

Lemma 31 (cf. Theorem 20 in [LLL24]). There is an FPT algorithm A2 that, for any constants
r > γ > 1, A2 take an instance of (k + k′)-MLDp instance (V, t⃗) with the following properties as
input:

• V = U ∪̇W ⊆ Fd
p,

• either there exists k vectors in U and k′ vectors in W whose sum being t⃗,

• or any solution to (V, t⃗) must contain at least rk vectors in U .

A2 output a new γ-Gap-k′′-MLDp instance (V ′, t⃗′) satisfying:

• V ′ = U ′∪̇W ′ ⊆ Fd′
p ,

• k′′ = O(k + k′), d′ = ⌈ γ
r−γ ·

k′

k ⌉d,

Proof Sketch. Let ℓ = ⌈ γ
r−γ ·

k′

k ⌉ and k′′ = ⌈ r
r−γ ⌉k

′. A2 produces vector set W ′ ⊆ Fℓd
p and target

t⃗′ ∈ Fℓd
p as

W ′ = {w⃗ ◦ w⃗ ◦ · · · ◦ w⃗︸ ︷︷ ︸
ℓ times

: w⃗ ∈W}, t⃗′ = t⃗ ◦ t⃗ ◦ · · · ◦ t⃗︸ ︷︷ ︸
ℓ times

.

For each u⃗ ∈ U(⊆ Fd
p), A2 produces ℓ “copies” u⃗1, · · · , u⃗ℓ ∈ Fℓd

p as

u⃗i = 0(i−1)d ◦ u⃗ ◦ 0(ℓ−i)d, for 1 ≤ i ≤ ℓ.

And the set U ′ collects all of these “copies” as

U ′ =
⋃̇

u⃗∈U
{u1, · · · , u⃗ℓ}.

Finally, V ′ = U ′∪̇W ′. The completeness is clear from the construction. For the soundness. It
is not hard to see (cf. [LLL24, Theorem 20]) that any solution to (V ′, t⃗′) need to contain at least
rk vectors in each “copy” of U , which means in total at least rℓk vectors in U ′. Hence the solution
must have size at least

rℓk + k′ = ⌈ rγ

r − γ
+ 1⌉k′ > ⌈ rγ

r − γ
⌉k′ = (1− o(1))γ · k′′.

The reduction clearly runs in FPT time.

Putting all things together, we have:

Theorem 32. For any prime p, any constants r > γ > 1, there is an FPT reduction from Avg-r-
Gap-2CSP instance Π = (X,Σ,Φ) to γ-Gap-k′-MLDp instance (V, t⃗) that satisfies k′ = ⌈ r

r−γ ⌉|Φ|.

Proof. Combine the reductions in Theorem 28 and Lemma 31.
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A From Average Baby PIH to Inapproximability of k-ExactCover

We present a proof relying on a construction that slightly differs from the one in [GRS24]. Their
proof make use of the (T,m)-set gadget [LY94,AMS06] that previously used to show hardness of
approximating SetCover problem. On the other hand, our proof develops a novel composition of
collision number of ECCs (recall Definition 22) with the following well-known combinatorial object.

Definition 33 (Hypercube Partition System). Let A,B be two sets. Then the (A,B)-hypercube
partition system is defined by

• the universeM = AB
(
=

{
z
∣∣ a function z : B → A

})
, and

• a collection of subsets
{
Px,y

}
x∈B,y∈A where each Px,y =

{
z ∈M

∣∣ z(x) = y
}
.

Theorem 34 (cf. Theorem 21 in [GRS24]). Assume that the Average Baby PIH holds on all 2CSP
instances with rectangular relations. Then k-ExactCover cannot be approximated in FPT time
within any constant factor. More precisely, for every constant r > 1 no FPT algorithm, on a given
k-SetCover instance Π = (S,U) with size n and k ≥ 1, can distinguish between the following two
cases:

• We can choose k disjoint sets in S whose union is U .

• U is not the union of any rk sets in S.

23



Proof. Let Π = (X,Σ,Φ) be an Avg-r-Gap-2CSP instance with rectangular relations. We set
k = |X|. Moreover, for each rectangular constraint φj = (xi1xi2 , Cj) ∈ Φ we use Qj to denote the
underlying set and πj , ρj : Σ→ Qj the associated mappings as in Definition 19. That is, for every
a, b ∈ Σ, it holds that (a, b) ∈ Cj if and only if πj(a) = ρj(b). Then we set

t = max
φj∈Φ

|Qj |. (12)

Clearly, we can assume without loss of generality

t ≤ |Π|.

Now we reduce Π to a k-ExactCover instance. To that end, we choose a further alphabet ∆
whose size is a prime and satifies

max
{
⌈log t⌉ , 22r2k2

}
≤ |∆| ≤ 2max

{
⌈log t⌉ , 22r2k2

}
.

Moreover,let

d =

⌈
2r2k2 log t

log |∆|

⌉
.

This leads to a Reed-Solomon code

Enc : ∆

⌈
log t

log |∆|

⌉
→ ∆d.

Plugging

k ←
⌊

log t

log |∆|

⌋
, m← d, p← |∆|, 3 and ε← 1/2

in Theorem 23 we conclude that the 1/2-collision number of Enc is

Col1/2(Enc) ≥

√
d

log t/ log |∆|
> rk.

Observe that (12) implies that every tuple in Ci can be identified with a string in ∆

⌈
logm
log |∆|

⌉
, i.e.,

the domain of Enc.

Then, for each variable x ∈ X and every its possible value a ∈ Σ, we define a set Sx,a as follows.
For each constraint φj = (xi1xi2 , Cj) ∈ Φ with associated set Tj and mappings πj , ρj : Σ→ Qj , and
for each ℓ ∈ [d], we construct a ([2],∆)-hypercube partition system(

M(j,ℓ), {P (j,ℓ)
u,v }u∈∆,v∈[2]

)
. (13)

3Observe that ⌊
log t

log |∆|

⌋
<

⌈
2r2k2 log t

log |∆|

⌉
≤ ⌈log t⌉ ≤ |∆|,

hence, the condition k < m ≤ p in Theorem 23 is satisfied.

24



Then for each (a, b) ∈ Cj we add P
(j,ℓ)
Enc(πj(a))[ℓ],1

to Sxi1
,a and similarly P

(j,ℓ)
Enc(ρj(b))[ℓ],2

to Sxi2
,b. Finally,

let the universe be

U =
⋃̇

φj∈Φ,ℓ∈[d]
M(j,ℓ), and S =

{
Sx,a

∣∣ x ∈ X and a ∈ Σ
}
.

For the completeness, let σ : X → Σ be a satisfying assignment of Π, it is routine to check that
{Sx,σ(x)}x∈X is a partition of U .

For the soundness, assume that every satisfying multi-assignment of Π has total value at least
rk (cf. Definition 11). Let S ′ ⊆ S be a cover of U . Consider the multi-assignment that maps every
variable x ∈ X to

{
a ∈ Σ

∣∣ Sx,a ∈ S ′
}
. If this multi-assignment satisfies Π, the our assumption

implies |S ′| ≥ rk. Otherwise, assume that there exists some constraint φj = (xi1xi2 , Cj) ∈ Φ which
is not satisfied. Note that the above multi-assignment assigns xi1 to E1 =

{
a ∈ Σ

∣∣ Sxi1
,a ∈ S ′

}
and xi2 to E2 =

{
b ∈ Σ

∣∣ Sxi2
,b ∈ S ′

}
. Since φj is not satisfied, for all (a, b) ∈ E1 × E2 we have

Enc(πj(a)) ̸= Enc(ρj(b)). However, for each ℓ ∈ [d], sinceM(j,ℓ) is covered by S ′, there must exist
a ∈ E1 and b ∈ E2 with Enc(πj(a))[ℓ] = Enc(ρj(b))[ℓ]. Therefore, the set {πj(a)}a∈E1 ∪ {ρj(b)}b∈E2

collides on all coordinates ℓ ∈ [d], hence it must have size at least Col1/2(Enc). We deduce

|S ′| ≥ |E1|+ |E2| ≥
∣∣{πj(a)}a∈E1 ∪ {ρj(b)}b∈E2

∣∣ ≥ Col1/2(Enc) > rk.

Finally, in each hypercube partition system (13) it holds that∣∣M(j,ℓ)
∣∣ = 2|∆| ≤ 4⌈log t⌉ + 42

2r2k2 ≤ |Π|2 + 42
2r2k2

,

and there are at most
(
k
2

)
d ≤ k2r2k2 log t ≤ r2k4 log |Π| such systems. The size of the universe U is

thus at most g(r, k)|Π|3 for some appropriate computable function g : N2 → N, while the parameter
of the k-ExactCover instance remains k = |X|. It follows easily that the running time of this
reduction is FPT.

Combining Theorem 34 and Theorem 21, we obtain:

Theorem 35. For any constant r > 1, r-approximating k-ExactCover is W[1]-hard.
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